# VRE <br> NN <br> 0T 5 <br> A LEVEL CIE 

 AS PURE MATH 1
## $(9799)$

QuadraticsFunctionsCoordinate geometryCircular measureTrigonometryVectorsSeriesDifferentiationIntegration
## Chapter I: Quadratics

## a) Basic Algebra

* Note: $(a x \pm b)^{2}=(a x)^{2} \pm 2 a b c \pm b^{2}$ $\operatorname{NOT}(a x)^{2}+b x^{2}$
- General form: $y=m x+c$
- Factorize a) $12 x-18 y=6(2 x-3 y)$
b) $6 x+5 x y+3 x^{2}=x(6+5 y+3 x)$
b) Using formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$E g: 5 x^{2}-4 x-1=0$

| $\frac{-(-4) \pm \sqrt{\left[(-4)^{2}-4(5)(-1)\right]}}{2(5)}$ | $=\frac{4+\sqrt{36}}{10}$ |
| ---: | :--- |
|  | $=\frac{4-\sqrt{36}}{10}$ |
|  | $=1$ |$\quad=-0.2 \quad \therefore x=1$ or -0.2

c) Completing the square

Completing the square is where we take

$$
(x+a)^{2}+b
$$

quadratic equations and turn them into $a(x+b)^{2}+c$

$$
\begin{aligned}
& \rightarrow x^{2}+b^{2}+c=(x+b / 2)^{2}-(b / 2)^{2}+c \\
& \rightarrow a x^{2}+b^{2}+c=a(x+b / 2)^{2}-a(b / 2)^{2}+c
\end{aligned}
$$

- Write in the form of $a(x+b)^{2}+c$
- Write in the form of $(x+a)^{2}+b$
a) $2 x^{2}-5 x$

$$
2\left(x-\frac{5)^{2}}{2}-\frac{25}{2}\right.
$$

a) $x^{2}+4 x$

$$
(x+2)^{2}+4
$$

b) $2 x^{2}-3 x-4$
b) $6 x^{2}+4 x-2$

$$
2\left(x-\frac{3)^{2}}{2} \frac{-9}{2}-4\right.
$$

$$
6(x+2)^{2}-24-2
$$

d) Graph of quadratic functions

To identify $x$-intercept, $y$-intercept and vertex

Example: $-x^{2}-2 x-13$

(1) Find $y$-intercept by equating $x=0$
$-(0)^{2}-2(0)+3=0$

$$
\text { At } y \text {-axis, } x=0
$$

$$
y=3 \quad \therefore(0,3)
$$

(2) Find $x$-intercept by calculator or formula $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

$$
\begin{aligned}
& x^{2}+2 x-3=0 \\
& (x+3)(x-1)=0 \\
& x=-3 \text { or }-1
\end{aligned} \quad \therefore(-3,0) \&(1,0)
$$

(3) Use $x=(-b) /(2 a)$ to find $x$ value of vertex

$$
x=\frac{-(-2)}{2(-1)} \quad=-1
$$

(4) Sub $x$ value of vertex into $f(x)$ to find $y$ value of vertex

$$
\begin{equation*}
f(-1)=-(-1)^{2}-2(-1)+3 \tag{-1,4}
\end{equation*}
$$

(5) Choose another value to sub into $f(x)$ to find 5 th point

$$
\begin{align*}
f(-2) & =-(-2)^{2}-2(-2)+3  \tag{-2,3}\\
& =3
\end{align*}
$$



## f) Diseriminant

$$
b \text { and } a \text { are coefficients of } x^{2} \text { and } x
$$

$$
=4
$$


$b^{2}-4 a c$ is called discriminant because it is the value that discriminates between the type of solution
$b^{2}-4 a c<0 \rightarrow$ real \& different roots
$b^{2}-4 a c<0 \rightarrow$ equal roots
$b^{2}-4 a c<0 \rightarrow$ no real roots


g) Solving simultaneous questions

* Always sub linear into quadratic!!
(1) Solve $x+2 y=7$ and $x^{2}+y^{2}=10$

$$
\begin{aligned}
& x=7-2 y \\
& (7-2 y)^{2}+y^{2}=10 \\
& 14-28 y+4 y^{2}+y^{2}=10 \\
& 5 y^{2}-28 y+4=0
\end{aligned}
$$

h) Solving inequalities
*Remember to flip sign when multiplying or dividing by a negative number
(1) Linear inequalities

$$
\begin{aligned}
& \text { Eg: } 2 x-3<5 \\
& 2 x<8 \\
& x<4
\end{aligned}
$$

(2) Quadratic inequalities
$\rightarrow$ solve quadratic eq.
$\rightarrow$ sketch graph
$\rightarrow$ find required set

$$
\begin{gathered}
E g: x^{2}-11 x+24<0 \\
(x-3)(x-8) \\
x=3, x=8
\end{gathered}
$$



$$
\therefore 3<x<8
$$

## Chapter 2 : Functions

$$
\text { Domain: set of values of } x
$$

Range: set of values of $y$
a) Graph ( $k$ is a positive constant)

$y=1 / x, b>0$
$y=1 / x+k, b>0$

$y=b /(x-a), a>0, b>0$

$E g: c=-1$

$$
y=b /(x-a)+k, a>0, b>0
$$

$E g: b=1, a=2, k=1$

c) Inverse function

* For a function $f(x)$ to have inverse function $\left(f^{-1}-1\right)$, it must be one to one.
* Range of $f(x)$ is domain of $f-1(x)$ and vice versa
* Domain of $f(x)$ is range of $f-1(x)$ and vice versa
* Graph of $\hat{f-1}(x)$ is the reflection of $f(x)$ along $y=x$
*To find $f^{-1}(x)$ of quadratic function, use completing the square
$E g: g(x)=2 x-3$, for $-2 \leq x \leq k$
i) State the largest value of k for which g is one to one ( has an inverse)

$$
\begin{aligned}
& 2 x-3=0 \\
& 2 x=3 \\
& x=1.5
\end{aligned}
$$

ii) Find an expression for $\hat{f}-1(x)$ and state the domain of $\hat{f}-1$

$$
\begin{aligned}
& y=2 x-3 \\
& \frac{y+3}{2}=x \quad f-1=\frac{x+3}{2}
\end{aligned}
$$

d) Composite function

- $g(x)=5 x \quad \rightarrow f(x)=2(2 x+3)+3$
- $f(x)=2 x-13 \quad \rightarrow f(x)=2(5 x)+3$
$\rightarrow g f(x)=5(2 x+3)$


## Chapter 3: Coordinate geometry

Distance between 2 points $=\sqrt{ }\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}\right]$
Midpoint $=\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2} \quad$ Gradient : $m=\begin{aligned} & y_{2}-y_{1} \\ & x_{2}-x_{1}\end{aligned}$
Equation of a line $=y-y_{1}=m\left(x-x_{1}\right) \quad$ General equation : $y=\underset{\substack{\downarrow x \\ \text { gradient }}}{\substack{c}}$

If 2 lines are parallel: $m_{1}=m_{2}$
If 2 lines are perpendicular: $m_{1} \times m_{2}=-1$
Perpendicular bisector : Both lines are perpendicular and intersect at midpoint
a) Polygon

Area of a $\triangle A B C=(I / 2)(A C)(B D)$

$$
\begin{aligned}
& B D=\text { distance of } B D \\
& A C=\text { distance of } A C
\end{aligned}
$$



$$
\begin{aligned}
\text { Area of polygons } & =(l / 2)\left|\begin{array}{c}
x_{1} x_{2} x_{3} x_{1} \\
y_{1} y_{2} y_{3} y_{1}
\end{array}\right| \\
& =(\| / 2) \|\left(x_{1} y_{2}+x_{2} y_{3}+x_{3} y_{1}\right)-\left(x_{1} y_{3}+x_{3} y_{2}+x_{2} y_{1}\right) \mid
\end{aligned}
$$

$$
\text { Area of trapezium }=\frac{(a+b)}{2}=h
$$

b) Angle between lines

## Chapter 4: Circular measure

a) Sine rule

Use if you know:
$\rightarrow$ two angles and the length of one of their opposite side
$\rightarrow$ the length of two sides and one of the opposite angle

## b) Cosine

Use if you know :
$\rightarrow$ lengths of two sides and the angle between them
$\rightarrow$ the length of all 3 sides

Since $\tan \theta=m$

$$
m=\tan ^{2}-1 \theta
$$




$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
\end{aligned}
$$

c) Area of triangle $\rightarrow$ Area $\Delta=1 / 2 a b \sin C \quad$ g) Area of a sector $\rightarrow A=1 / 2 r^{2} \theta$
d) The length of an arc of a circle $\rightarrow S=r \theta$
f) Properties of a circle


The perpendicular from the centre of a circle to chord bisects the chord.


The angle in a semicircle is a right angle


The line joining the intersection point of two circles is perpendicular to the line joining the two centres


A tangent is a line that meets the circle at one point only


To tangent lines will form 2 congruent triangles

## Chapter 5 : Trigonometry


b) Graphs of $\sin \theta, \cos \theta$ and $\tan \theta$


Sine graph


Cos graph

c) Identifying transformations of graph

Eg:

$y=a \sin (b x)+c$
amplitude alters number alters $y$-axis of cycle
$\therefore a=2$
$\therefore b=1 / 4$

Find the values of $a$, and $b$.
d) Trigonometry identities

$$
\begin{aligned}
& \cos ^{2} \theta+\sin ^{2} \theta=1 \\
& \tan \theta=\frac{\sin \theta}{\cos \theta}
\end{aligned}
$$

## Chapter 6 : Vector

a) Notation of vector :
 or

b) Equal vector Two vectors $A B$ and $C D$ are equal if and only if:

- $\overrightarrow{A B}$ is parallel to $\overrightarrow{C D}$
- $|\overrightarrow{A B}|=|\overrightarrow{C D}|$
- The direction from $A$ to $B$ is same as from $C$ to $D$
c) Addition of vectors

To find $A C$ you must add $\overrightarrow{A B}$ and $\overrightarrow{B C}$

$$
\overrightarrow{A B}+\overrightarrow{B C}=\overrightarrow{A C}
$$

d) Unit vector

$$
\frac{\overrightarrow{A B}}{|\overrightarrow{A B}|} \quad \text { Vector divided by magnitude of vector }
$$


Given $\overrightarrow{O A}$ and $\overrightarrow{O B}$, find $\overrightarrow{A B}$

$$
\text { Eg: } \begin{array}{rlrl}
\overrightarrow{O A} & \overrightarrow{O B}: 3 i+5 j & \overrightarrow{A B} & =\overrightarrow{O B}-\overrightarrow{O A} \\
& =\left(\begin{array}{cc}
2 i & -3 i \\
5 j- & j
\end{array}\right)=-i+4 j
\end{array}
$$

## f) Distance

- Magnitude of vector $x i+y j+z k=\sqrt{\left(x^{2}+y^{2}+z^{2}\right)}$
- Distance between two points is $\sqrt{ }\left[\left(x_{1}-x_{2}\right)+\left(y_{1}-y_{2}\right)+\left(z_{1}-z_{2}\right)\right]$
g) Midpoint Mid point of $A B$ has position vector $1 / 2(\overrightarrow{O A}+\overrightarrow{O B})$
If $M$ is the midpoint of $A B$ then $\overrightarrow{O M}=1 / 2(\overrightarrow{O A}+\overrightarrow{O B})$ and not $1 / 2 \overrightarrow{A B}$
h) Scalar product (Dot product)

$$
\begin{aligned}
& a \cdot b=|a||b| \cos \theta \\
& \therefore \cos \theta=\frac{a \cdot b}{|a||b|}
\end{aligned}
$$


*Note : If two vectors are perpendicular, $a . b=0$

Use scalar product to find angle between two vectors

## Chapter 7: Series

Arithmetic: General term: Un $=\underline{\underline{a}}+(n-1) d$
Sum of arithmetic series

$$
\begin{gathered}
S n=(n / 2)[2 a+(n-1) d] \\
\text { or } \\
S n=(n / 2)(a+L)
\end{gathered}
$$

Geometric : General term : an = ain ${ }^{n-1}$
Sum off geometric series

$$
S n=a\left(r^{n}-1\right), r>1 \quad S n=\frac{a\left(1-r^{n}\right)}{\stackrel{r}{-1}}, r<1
$$

Sum to infinity: $S_{\infty}=a$

$$
1-r
$$

a) Binomial expansion

$$
\begin{align*}
& \left.\qquad \begin{array}{l}
(a+b)^{n}=\left(n C_{0}\right)\left(a^{n}\right)+\left({ }^{( } C_{1}\right)\left(a^{n-1}\right)(b)+\left(n^{n} C_{2}\right)\left(a^{n-2}\right)\left(b^{2}\right) . \\
(1+x)^{n}
\end{array}\right)=1+n x+\frac{n(n-1)(x)^{2}}{2!} \frac{n(n-1)(n-2)\left(x^{3}\right)}{3!} \\
& \text { Must always be } \tag{24}
\end{align*}
$$

## Chapter 8 : Differentiations <br> a) Differentiations <br> $$
\frac{d y}{d x} \text { or } f^{\prime}(x)
$$ <br> $$
E g: y=2 x^{3}
$$ <br> $$
\frac{d y}{d x}=6 x^{2}
$$ <br> $$
\text { *Change } \sqrt{x} \text { and }(1 / x) \text { to } x^{1} / 2 \text { and } x^{-1} \text { respectively }
$$ <br> <br> *Change $\sqrt{x}$ and $(1 / x)$ to $x^{1} / 2$ and $x^{-1}$ respectively

 <br> <br> *Change $\sqrt{x}$ and $(1 / x)$ to $x^{1} / 2$ and $x^{-1}$ respectively}b) Chain rule

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x} \\
& \hline
\end{aligned}
$$

*Note : Differentiate outside then differentiate inside

$$
\begin{aligned}
E g: f(x)=(1+2 x)^{3} \quad f^{\prime}(x) & =3(1+2 x)^{2} \times 2 \\
& =6(1+2 x)^{2}
\end{aligned}
$$

c) Second derivatives (Differentiate twice) $\frac{d^{2} y}{d x^{2}}$ or $f^{\prime \prime}(x)$
d) Gradient of the curve
$\frac{d y}{d x}=$ gradient of the curve

Eg: Find the gradient of the curve $f(x)=3 x^{2}$ at point $(2,12)$

$$
f^{\prime \prime}(x)=6 x \text {, therefore gradient is } 6(2)=12
$$

## e) Increasing, decreasing and stationary function

$$
\begin{aligned}
& \text { Increasing }=f^{\prime}(x)>0 \\
& \text { Decreasing }=f^{\prime}(x)<0 \\
& \text { Stationary/Turning point }=f^{\prime}(x)=0
\end{aligned}
$$

f) Nature of the graph Use second derivative to find nature of graph

$$
\text { Maximum : } f^{\prime \prime}(x)<0
$$

$$
\text { Minimum : } f^{\prime \prime}(x)>0
$$

g) Rate of change of a function

## Eg:

$$
\frac{d y}{d x}=\frac{d y}{d t} \times \frac{d t}{d x}
$$

The equation of the curve is $y=x^{2}-5 x$
$A$ point $P$ is moving along the curve so that the $x$ coordinate is increasing at a constant rate of 0.2 units per second. Find the rate at which the $y$ coordinate is increasing when $x=4$

$$
\begin{aligned}
& 2 x-5=(d y / d t) \times(1 / 0.2) \\
& 2(4)-5=(d y / d t) \times 5 \\
& 0.6=d y / d t
\end{aligned}
$$

Formulas for volume of:
Sphere $=(4 / 3) \pi r^{3}$
Cone $=\pi r^{2}(h / 3)$
Pyramid $=$ LWH/3
Cylinder $=\pi r^{2} h$

Chapter 9 : Integration

$$
c+x^{2} \underset{\text { integration }}{\stackrel{\text { differentiation }}{\leftrightarrows}} 2 x
$$

$$
\int \mathrm{x}^{\mathrm{n}} d x=\frac{x^{n+1}}{n+1}+c
$$

a) Integration

$$
\begin{aligned}
E g: f^{\prime}(x) & =2 x^{2}+3 \\
f(x) & =\frac{2 x^{3}+3 x}{3(2)}
\end{aligned}
$$

b) Area under the curve


Integrate from upper limit (G) to lower limit (F)
c) Area between a line and a curve


$$
\text { Area } \left.=\int_{a}^{b} y_{1} d x-\int_{a}^{b} y^{2} d x \text { (upper bound }- \text { lower bound }\right)
$$

d) Volume of revolution

About the $x$-axis $=\pi \int_{a}^{b} y^{2} d x$
About the $y$-axis $=\pi \int_{a}^{b} x^{2} d y$


Ist Edition: Zhi Yee
Producer: Mr. Sai Mun
Copyright by Ubest. All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher. Legal actions could be taken if there is a breach in copyrights of the notes.
Although we make strong efforts to ensure that all information is accurate at time of publication, UBest cannot guarantee that all information on this website or in these notes are always correct, complete, or up to date.

