VBEST NOTES
 EEST

$-\sqrt{4}$
5
A2 STATSTES 2
(9799)

StatisticsPoisson distributionLinear combinations of random variablesContinuous random variablesSampling and estimationHypothesis testing

Chapter 1 : Poisson Distribution

a) Poisson distribution

$X \sim D_{0}(\lambda)$, where λ represents constant average rate $P(X=x)=\frac{e^{-\lambda} \lambda^{x}}{x!} \quad x=0,1,2,3, \ldots$ to infinity
Eg: $X \sim p_{0}(2)$
i) $P(X=4): \frac{\left(e^{-2}\right)\left(2^{4}\right)}{4!}=0.9022$
ii) $p(x>4): 1-e^{2}\left(1+2+\frac{2^{2}}{2!}+\frac{2^{3}}{3!}+\frac{2^{4}}{4!}\right)=0.0527$
mean and variance are both the λ value
b) Poisson distribution as an approximation to the binomial distribution
$X \sim B(n, p) ; X \sim p_{0}(\lambda)$
$\mu=n p \quad \mu=\lambda$
$\therefore n p=\lambda$
$E g: X \sim B(80,0.10)$

$$
80 \times 0.10=8 \quad x \sim p_{0}(8)
$$

$$
p(x<2)=e^{-8}\left(1+8+\frac{8^{2}}{2!}\right)=0.01375
$$

c) Normal distribution as an approximation to Poisson distribution

$X \sim p_{0}(\lambda)$	$;$	$X \sim N\left(\mu, \sigma^{2}\right)$
$V a r=n p q$	$V a r=\sigma^{2}$	
Can be approximated $i f \lambda>15$ (large)		

Continuity correction is required since you are using a continuous distribution as an approximation to a discrete distribution
$E g: x \sim P_{0}(30) \quad P\left(2 \leq \frac{20.5-30}{\sqrt{30}}\right)$
$P(X \leq 20)$

$$
\begin{aligned}
& p(2 \leq-1.734) \\
& p=1-0.9586=0.0414
\end{aligned}
$$

Chapter 2 : Linear combinations of random variables

a) Mean and variance
$E(a X)=a E(X)$
$\operatorname{Var}(\mathrm{a} X)=a 2 \operatorname{Var}(X)$

$$
\begin{aligned}
& E(a X+b)=a E(X)+b \\
& \operatorname{Var}(a X+b)=a 2 \operatorname{Var}(X) \text { variance is not affected by }+b
\end{aligned}
$$

Eg: The random variable X has mean 20 and variance 4.
i) $6 X+1$
ii) $3 X-2$
Mean $=121$ and Variance $=25$
Mean $=58$ and Variance $=10$
b) Sums and differences of independent random variables

$$
\begin{aligned}
E(a X \pm b Y \pm c)= & a E(X) \pm b E(Y) \pm c \\
\operatorname{Var}(a X \pm b Y \pm c) & =a^{2} \operatorname{Var}(X)+(-b)^{2} \operatorname{Var}(Y) \\
& =a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)
\end{aligned}
$$

Variance is not affected by e and is always added

Eg: X and Y are independent variables such that $E(X)=8, \operatorname{Var}(X)=2$,
$E(Y)=10$ and $\operatorname{Var}(Y)=3$. Find the mean and variance of $3 X+2 Y$
Mean: $3(8)+2(10)=44$
Variance: $3^{2}(2)+2^{2}(3)=30$
Independant observation
If random variables are independent there is no square for variance

$$
\begin{aligned}
E(X 1+X 2) & =E(X 1)+E(X 2) & \operatorname{Var}(X 1+X 2) & =\operatorname{Var}(X 1)+\operatorname{Var}(X 2) \\
& =E(X)+E(X) & & =\operatorname{Var}(X)+\operatorname{Var}(X) \\
& =2 E(X) & & =2 \operatorname{Var}(X)
\end{aligned}
$$

	$\boldsymbol{X}_{\mathbf{1}}+\boldsymbol{X} \mathbf{2}$	$\boldsymbol{2 \boldsymbol { X }}$
Mean	$\mathrm{E}\left(X_{1}+X_{2}\right)=2 \mathrm{E}(X)$	$\mathrm{E}(2 X)=2 \mathrm{E}(X)$
Variance	$\operatorname{Var}\left(X_{1}+X_{2}\right)=2 \operatorname{Var}(X)$	$\operatorname{Var}(2 X)=2^{2} \operatorname{Var}(X)$

If $X \sim p_{0}\left(\lambda_{2}\right)$ and $Y \sim p_{0}\left(\lambda_{2}\right)$ then $X+Y \sim p_{0}\left(\lambda_{1}+\lambda_{2}\right)$
Mean and variance are both $\lambda_{1}+\lambda_{2}$

Chapter 3 : Continuous Random Variable

a) Probability density function
$P(a<X<b)=\int_{a}^{b} f(x) d x$
Area under the graph $=1$

b) Mean and variance

Mean: $\quad \int_{-\infty}^{\infty} x f(x) d x$
Variance: $\int_{-\infty}^{\infty} x^{2} f(x) d x-\mu^{2}$

c) Median and quartiles

If the continuous random variable X is defined by its probability density function for $a \leq x \leq b$ then

$$
\begin{aligned}
& \text { Chapter } 4 \text { : Sampling and estimation } \\
& \qquad \begin{array}{r}
\text { a) Sample mean and variance } \bar{X} \\
\mathrm{E}(\bar{X})=\mu \\
\operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{n}
\end{array} \begin{array}{l}
\text { The st } \\
\text { of the } \\
\text { b) Central limit theorem kno }
\end{array}
\end{aligned}
$$

$\int_{a}^{m} f(x)=\frac{1}{2}$ for median
$\int_{a}^{q 1} f(x)=\frac{1}{4}$ for lower quartile
$\int_{a}^{q 3} f(x)=\frac{3}{4}$ for upper quartile

- If X is normally distributed then \bar{X} will also be normally distributed.
- If X is not normally distributed but n is large then the distribution of \bar{X} can be approximately normally distributed.
- When the normal distribution is used as an approximation to a discrete distribution a continuity correction is needed.
c) Confidence interval

A and B are known as confidence limits
95% confidence interval for μ if $\bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)$

If 100 samples are taken, 95 of the samples are said to contain the population mean or P $($ interval contains $\mu)=0.95$.

The $a \%$ of confidence interval

$$
\left(\bar{x}-z \frac{\sigma}{\sqrt{n}}, \bar{x}+z \frac{\sigma}{\sqrt{n}}\right)
$$ is

The width of the $\alpha \%$ confidence interval is $2 \times z \frac{\sigma}{\sqrt{n}}$

Chapter 5 : Hypothesis testing

Null hypothesis H_{0} : hypothesis that we assume to be correct unless proven otherwise
Alt hypothesis H_{1} : tells us the value of population parameter if our assumption is shown to be wrong Critical region: the range of values of the test centre state that need you to rejecting H_{0}
Critical value : boundaries of the critical region
Level of significance : threshold probability that varies depending on nature of the problem
a) Critical region

Eg:

Range of yalues for which you reject the null hypothesis is known as critical region
i) Upper tail: critical value at c,
the critical region consists of values greater than or equal to c such that $\mathrm{P}(X \geq c)<0.05$
ii) Lower tail: critical value at c,
the critical region consists of values less than or equal to c such that $\mathrm{P}(X \leq c)<0.05$
ii) Two-tail: critical value at c_{1} and c_{2},
the critical region consists of values greater than or equal to c such that $\mathrm{P}\left(X \geq c_{l}\right)<0.025$
b) Hypothesis testing

Step 1: Define the variable and its distribution
Step 2: State the null hypothesis, HO and the alternative hypothesis, HI
Step 3: State the rejection rule (either a probability statement or critical region)
Step 4: Find whether the test value lies in the critical region by calculating the probability and comparing to significant level.
Step 5: Make your conclusion in statistical terms
One tailed hypothesis

$$
\begin{aligned}
& \mathrm{H}_{o}: \theta=m \\
& \mathrm{H}_{1}: \theta>m \\
& \text { Reject } \mathrm{H}_{\mathrm{o}} \text { if } \mathrm{P}(X \geq x) \leq \propto \%
\end{aligned}
$$

$$
\mathrm{H}_{o}: \theta=m
$$

$$
\mathrm{H}_{1}: \theta<m
$$

$$
\text { Reject } \mathrm{H}_{\mathrm{o}} \text { if } \mathrm{P}(X \leq x) \leq \propto \%
$$

Two-tailed hypothesis

$$
\begin{aligned}
& \mathrm{H}_{0}: \theta=m \\
& \mathrm{H}_{1}: \theta \neq m \\
& \text { Reject if } \mathrm{P}(X \geq x) \leq \frac{1}{2} \propto \text { or } \mathrm{P}(\mathrm{X} \leq x) \leq \frac{1}{2} \propto
\end{aligned}
$$

c) Type I and type II errors

Type I error is made when true H_{0} hypothesis is rejected
Type Il error is made when false Hris rejected
*To find the probability of a Type Il error you must be given a specific value for alternative H_{1}

ESST

Ist Edition: Zhi Yee
Producer : Mr. Sai Mun
Copyright by Ubest. All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher. Legal actions could be taken if there is a breach in copyrights of the notes.
Although we make strong efforts to ensure that all information is accurate at time of publication, UBest cannot guarantee that all information on this website or in these notes are always correct, complete, or up to date.

