
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Statistics

 Poisson distribution 

 Sampling and estimation 

 Hypothesis testing

Linear combinations of random variables 

 Continuous random variables 
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Chapter 1 : Poisson Distribution 
X~P₀ (λ) , where λ represents constant average rate 

mean and variance are both the λ value

a) Poisson distribution

Eg : X~B ( 80, 0.10)X~B (n,p) ; X~P₀ (λ) 
µ = np           µ = λ       
       ∴ np = λ  
 

Eg : X~P₀ (30) 
P( X ≤ 20)  

X can be approximated by P₀(np) if  
n is large, p is small and np > 5

X~P₀ (λ)          ;      X~N(µ, σ²) 
 Var = npq               Var = σ²  
Can be approximated if λ > 15 (large) 

 Continuity correction is required since you are using 
a continuous distribution as an approximation to a 
discrete distribution 

c) Normal distribution as an approximation to Poisson distribution 

80 x 0.10 = 8 X~P₀ (8) 

b) Poisson distribution as an approximation to the binomial distribution 

P ( X < 2) =

1

0.9022
Eg : X~P₀ (2) 
i) P(X= 4) : (e⁻² )(2⁴)    =  
                      4! 
ii) P( X> 4) : 1 - e⁻²   1 + 2 + 2² + 2³ + 2⁴           =  
                                          2!     3!    4! 

0.0527

e⁻⁸   1 + 8 + 8²        =  
                   2! 

0.01375

P    Z ≤ 20.5 - 30 
                √ 30
P ( Z ≤  -1.734 )     
  p = 1 - 0.9586 = 0.0414 



	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a) Mean and variance

Chapter 2 : Linear combinations of random variables 

E(aX) = a E(X)  
Var (aX) = a2 Var(X) 

ii) 3X - 2 
Mean = 58 and Variance = 10

Eg : The random variable X has mean 20 and variance 4. 
i) 6X + 1   
Mean = 121 and Variance = 25

b) Sums and differences of independent random variables 

E(aX + b) = a E(X) + b  
Var (aX + b) = a2 Var(X)    variance is not affected by +b  

Variance is not affected by c and is 
always added 

Eg : X and Y are independent variables such that E(X) = 8, Var (X) = 2,  
E(Y) = 10 and Var(Y) = 3. Find the mean and variance of 3X + 2Y 
 

Mean : 3(8) + 2(10) = 44 
Variance : 3² (2) + 2²(3) = 30

Independant observation

E(aX ± bY ± c) = a E(X) ± b E(Y) ± c  
Var (aX ± bY ± c) = a² Var(X) + (-b)² Var(Y)      
                            = a² Var(X) + b² Var(Y) 

 If random variables are independent there is no square for variance

E(X1 +  X2) = E(X1) + E(X2)                 
                   = E(X) + E(X)                
                   = 2 E(X)  

Var(X1 +  X2) = Var(X1) + Var(X2)                    
                      = Var(X) + Var(X)                      
                      = 2 Var(X)

2



	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

41111

T

c) The sum of independent Poisson variables

If X ~ Po (λ₂) and Y ~ Po (λ₂ ) then X + Y ~ P₀ ( λ₁ + λ₂) 
Mean and variance are both λ₁ + λ₂ 

Chapter 3 : Continuous Random Variable
a) Probability density function 

P(a < X < b) = 

Area under the graph = 1 

b) Mean and variance

Mean : Variance :

c) Median and quartiles 

If the continuous random variable X is defined by 
its probability density function for a ≤ x ≤ b then 
 

Chapter 4 : Sampling and estimation 
a) Sample mean and variance The standard deviation 

of the distribution of sample 
is known as standard error 

If X is normally distributed then X will also be normally distributed. •
If X is not normally distributed but n is large then the distribution of X can be approximately normally •
distributed. 
When the normal distribution is used as an approximation to a discrete distribution a continuity correction •
is needed.

b) Central limit theorem 

3



	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

c) Confidence interval 

           

 A and B are known as confidence limits 

The α% of confidence interval 
is 

 The width of the α% confidence interval is 

Chapter 5 : Hypothesis testing 

Null hypothesis H₀ : hypothesis that we assume to be correct unless proven otherwise 
Alt hypothesis H₁ : tells us the value of population parameter if our assumption is shown to be wrong  
Critical region :  the range of values of the test centre state that need you to rejecting H₀ 
Critical value : boundaries of the critical region 
Level of significance : threshold probability that varies depending on nature of the problem 

a) Critical region  Range of values for which you reject the null 
hypothesis is known as critical region 

Eg : 
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b) Hypothesis testing 

Step 1:  Define the variable and its distribution 
Step 2:  State the null hypothesis, H0 and the alternative hypothesis, H1 
Step 3:  State the rejection rule (either a probability statement or critical region) 
Step 4:  Find  whether  the  test  value  lies  in  the  critical  region  by  calculating  the  probability 
and comparing to significant level. 
Step 5:  Make your conclusion in statistical terms 
 

 Two-tailed hypothesis 

One tailed hypothesis 

c) Type I and type II errors

Type I error is made when true H₀ hypothesis is rejected 
Type II error is made when false H₁ is rejected *To find the probability of a Type II error you must 

be given a specific value for alternative H₁ 
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