VBEST NOTES
 ESST

AO SAMCTGS
$(97!9)$

StatisticsRepresentation of dataPermutations and combinationsProbabilityDiscrete random variableNormal distribution

Chapter I: Representation of data

a) Organising quantitative data

- Stem and leaf diagram

Single set stem and leaf diagram

Back to back stem and leaf diagram

- Frequency distribution for continuous data

No. of cars	Frequency
10	10
20	17
30	21
40	25
50	28
60	30

- Histogram

- Cumulative freauencu araph

Weight(kg)	f	Upper boundaries	Cumulative Frequency
$45-54$	6	44.5	0
$55-59$	9	54.5	6
$60-64$	20	64.5	15
$65-69$	14	69.5	35
$70-74$	10	74.5	49
$75-79$	7	79.5	59
$80-89$	5	89.5	66
$90-104$	4	104.5	71

Cumulative

Cumulative frequency is plotted against upperclass boundaries and first value of the cumulative frequency is zero

Measurements of central tendency: Measures of dispersion/spread:

- Mode or modal class
- Mean
- Median
- Range
- Interquartile range
- Standard deviation
- Mean and variance

Ungrouped data

$$
\underset{\text { mean }}{\text { ed data }}=\frac{\sum x}{n} \quad \begin{gathered}
\text { Grouped data } \\
\text { mean }
\end{gathered}=\frac{\sum f x}{\sum f}
$$

n is the total number of datas
Standard deviation $=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n}}$
OR

$$
\sqrt{\frac{\Sigma x^{2}}{n}-(\bar{x})^{2}}
$$

c) Coding

Eg:
A summary of 20 observations of x gave the following information:

$$
\sum(x-a)=100, \sum(x-a)^{2}=1500, \bar{x}=25
$$

Find the value of a and the standard deviation.

$$
\begin{aligned}
& 100 / 20=25-a \\
& a=20
\end{aligned} \begin{aligned}
& \frac{1500-5^{2}}{20} \\
& =\sqrt{50}
\end{aligned}
$$

If x is deducted from every data then x is deducted from the final mean of the datas
*SD is not affected by coding
d) Median and interquartile range

Median is the middle value of an ordered set of data for observation
Q: : Lower quartile
Q_{2} : Median \quad Inter quartile range (IQR) $=U Q-L Q$
Q3: Upper quartile
Outlier is an extreme value and is 1.5 times the interquartile range above the upper quartile or below the lower quartile. (< LQ - 1.5 IQR or $>U Q+1.5$ IQR)
e) Box and whiskers plot

Chapter 2 : Permutation and combination

a) Permutation

Arrangement of n distinct items in online or at a time, order is important
Eg:STAR: 4! $=24$
Eg:AUGUST: $6!=360$
Eg : Arrangement for AUGUST with both of U together

$$
\underline{U}_{U}^{U} \underline{-}^{-}=5!=120 \quad \text { (Put both } U \text { together and count as one) }
$$

Eg: Arrangement for AUGUST with both of Uot together

$$
\frac{6!}{2!}-5!=240
$$

Eg : Arrangement for NUMBER with both of U and E together

$$
\underline{U E}-5!\times \underline{2!}=240 \rightarrow U \text { and } E \text { can swap places }
$$

Eg: Arrangement for CANADA if exactly 2 As are together

$$
\text { Normal - all together - all separate } \quad \frac{6!-4!-403=92}{3!}
$$

Eg : How many odd numbers can be formed using only three digits from 4,5,6,7 with no digit being used more than once

$$
\begin{array}{ll}
-5 \\
--7
\end{array} \quad 3 P 2+3 P 2=12
$$

Eg: Find how many numbers between 5000 and 6000 can be formed within the digits 1,2,3,4,5 and 6 if repeated digits are allowed

$$
5 \ldots \quad 6 \mathrm{P} 4=360
$$

b) Combination Order of selection is not important

Eg : A committee of 5 people is to be chosen from 4 men and 6 women. William is one of the 4 men and Mary is one of the 6 women. Find the number of different committees that can be chosen if William and Mary refuse to be on the same committee together

W
W_
M M_--8 C 4
804
$8 C 4+8 C 4+8 C 5=196$
805

Eg:3 letters from a nine letters of the word EVERGREEN are selected. find the number of selections which contains no Es.
$R_{\text {_ }} 302$
R R_3 Cl
$302+3 C 1+303=7$
_ _ _ 303
c) Probability

Eg :4 students are to be selected from 3 female students and 5 male students. Find the probability that the chosen student consist of three male and one female
$P(3 M I F)=503 \times 3 C l$
$8 \mathrm{C4}$
$=3 / 7$

Chapter 3. Probability

a) Special events

$$
P(A)=n(A) \leftarrow \text { Number of outcomes of } A
$$

$\mathrm{n}(\mathrm{S}) \leftarrow$ Total number of possible outcomes
i) Complement of the event A
is denoted by A '
it means that A does not occur

Event A

Event A'
ii) Union of 2 events
is denoted by $A \cup B$
it means that thee new set contains all elements that are in at least one of the two sets
iii) Intersection of 2 events
is denoted by $A \cap B$
it means that the new set contains all of the elements that are in both sets

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

b) Mutually exclusive

Two events are said to be mutually exclusive if both events cannot occur at the same time
If A and B are mutually exclusive then $P(A \cap B)=0$ or $P(A \cup B)=P(A)+P(B)$
c) Conditional probability
$A \mid B$ means that event A occurs given that B has occurred
$P(A \mid B)=\frac{P(A \cap B)}{P(B)}$
d) Independent events

Occurrence or non-occurrence of either event does not effect the other event

e) Tree diagram

$1-$ Branch 1 $+1 \xrightarrow{ }+$
$P(A \cap B)=P(A) \times P(B)$
f) Probability with permutation and combination

Probability $\frac{\text { Restriction }}{\text { No restrictions }}$

Chapter 4 : Discrete random variables

a) Probability distribution table

$$
\begin{aligned}
& \Sigma P(X=x)=1 \\
& a_{1}+a_{2}+a_{3}+a_{4}=1
\end{aligned}
$$

b) Mean and variance \quad Mean is denoted by $E(X)$ and $\operatorname{Variance}$ is denoted by $\operatorname{Var}(X)$

Eg:

g: \quad| x | -2 | -1 | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{P}(X=x)$ | α | 0.2 | 0.1 | 0.2 | β |

(a) Given that $\mathrm{E}(X)=-0.2$, find the value of α and the value of β.
(b) Evaluate $\operatorname{Var}(X)$.

$$
\begin{array}{ll}
-0.2=-2 a-0.2+0.2+2 B & B=0.2 \\
a+0.2+0.1+0.2+B=1 & A=0.3
\end{array}
$$

x	1	2	3	4
$P(X=x)$	a_{1}	a_{2}	a_{3}	a_{4}

$$
a=0.5-B
$$

$$
-2(0.5-B)-0.2+0.2+2 B=-0.2
$$

$$
-1+4 B=-0.2
$$

c) Binomial distribution $\quad X \sim B(n, p)$ n is number of trials and p is probability of success at trial

$$
P(X=x)={ }^{n} C_{x} P^{x} q^{n-x} ; q=1-p
$$

$$
\text { Mean = np and Variance }=n p q
$$

Chapter 5: Normal distribution

a) Standard normal distribution

A normal distribution is symmetrical about its mean

Eg: $X \sim N\left(39,3.4^{2}\right)$

$$
P(X>45)=P\left(2>\frac{45-39)}{3.4}\right.
$$

$$
P(X<45)=P\left(2<\frac{45-39)}{3.4}\right.
$$

b) Approximation

$$
P(X \geq 45)=P\left(2>\frac{44.5-39)}{3.4}\right.
$$

$$
P(X \leq 45)=P\left(2<\frac{45.5-39)}{3.4}\right.
$$

Conditions for approximating binomial to normal : n is large, $n p>5$ and $n q>5$

ESST

Ist Edition: Zhi Yee
Producer : Mr. Sai Mun
Copyright by Ubest. All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher. Legal actions could be taken if there is a breach in copyrights of the notes.
Although we make strong efforts to ensure that all information is accurate at time of publication, UBest cannot guarantee that all information on this website or in these notes are always correct, complete, or up to date.

